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Abstract— Human activity recognition is essential for providing services in the Internet of Things. Thanks to their 

ubiquity, sensing capability, and processing power, modern smartphones have become attractive devices for activity 

recognition. However, their limited battery capacity places a hurdle to exploit such sensing and processing power. While 

power is consumed in both the sensing and computation layers of the recognition process, power optimization in the 

latter layer has not been studied extensively enough. This paper strives towards energy-efficient activity recognition by 

focusing on the cost of feature extraction. To this end, the energy cost of extracting various features is examined and 

test-cost sensitive prediction models are employed to recognize activities from features. Experimental results reveal a 

considerable opportunity to conserve energy by awareness of the cost of feature extraction. With only a small sacrifice 
in prediction accuracy, the energy cost of computations can be reduced by a factor of three.  

Keywords- Internet of Things (IoT); Human Activity Recognition (HAR); Power-Aware Computing; Pervasive Computing; 

Test-Cost Sensitive Learning; Ambient Intelligence (AmI) 

 

I. INTRODUCTION
1 

Ambient intelligence (AmI) is an essential 
prerequisite to improving the quality of human life. 
AmI refers to environments which can sense context, 
recognize actions, and intelligently adapt to situations 
and cater to needs [1]. One fundamental building block 
of an AmI system is the capability of recognizing 
human activities. For example, when someone has been 
walking in a park listening to soft music, the player will 
switch to upbeat music just after this person starts 
jogging. 

Applications of human activity recognition (HAR) 
go far beyond this basic example and include, but are 
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not limited to, areas of healthcare, care for the elderly 
and children, assisted living, sports, and the military. 

It is possible to recognize human activities by 
processing the installed video camera feeds of an 
environment [2, 3]. However, this is an obtrusive and 
compute-intensive approach and generally disliked by 
those inhabiting or frequenting the environment. 
Another approach involves mounting several sensors 
on the body of the subjects [4]. This only alters the type 
of obtrusiveness, from mounting cameras to wearing 
sensors. Currently for HAR, there is a viable alternative 
to wearable sensors and video cameras: smartphones. 
The following properties of today's smartphones make 
them suitable devices for activity recognition: 
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 Ubiquitous: Almost everyone owns at least one 
smartphone. 

 Unobtrusive: People are accustomed to 
carrying a smartphone. 

 Sentient: Smartphones are equipped with 
various kinds of sensors such as 
accelerometers, gyroscopes, proximity sensors, 
etc. 

 Capable: Smartphones have powerful 
computational resources and can perform local 
computations. 

 Connected: Whenever required, smartphones 
can offload heavier computational tasks to the 
cloud. 

The generic problem of smartphone-based activity 
recognition is depicted by Fig. 1. The raw inputs to 
HAR are the discrete stream of signals collected from 
phone sensors. Among the various types of sensors 
found on a typical smartphone, different subsets of 
sensors have been employed in literature. The current 
study utilizes tri-axial accelerometer sensor data. Each 
sample of this sensor is a tuple of three acceleration 
values in three-dimensional space. The sensor data is 
usually sampled at a specific fixed period of time. 
However, to help with power efficiency, sometimes 
sensor reading rates are lowered when this does not 
adversely affect recognition accuracy. At the heart of an 
HAR solution is a model which predicts activities from 
sensor data. This model is usually data-driven and 
learnt from labeled training data collected by volunteers 
over a period of several days or months. The model 
usually does not consume raw sensor data directly, but 
rather some informant features extracted from it. For 
this purpose, the data is segmented into some windows 
of a specific length, and some features are extracted for 
each window. These defined features can be of a time-
domain (such as mean value and standard deviation), 
frequency-domain (such as the dominant frequency), or 
of any other type. 

 

 

Fig. 1: The problem of human activity recognition. 

 

A major challenge for smartphone-based activity 
recognition is power efficiency. HAR is a classification 
machine learning task which has been extensively 
studied by researchers in terms of prediction accuracy. 
However, the power consumption optimization of HAR 
deserves more attention, especially when it comes to 
smartphones. The limited battery capacity of these 
devices restricts the energy budget of resource-hungry 
HAR operations. Power-unawareness can cause 
excessive heating and rapidly discharge the device’s 
battery, thus leading to poor user experience and low 
applicability of unoptimized activity recognition 
approaches. 

The majority of previous research in the field of 
power-efficient HAR has focused on power 
optimization at the sensing layer. Considering the rapid 
advancement of low-power sensing technology and the 
tendency of activity recognition algorithms to become 
more complex and CPU-intensive, it is also vital to 
strive for power optimization in the computational layer 
of HAR tasks. The present study is an effort to optimize 
the power consumption of the computational part of 
HAR tasks by employing lazy test-cost-sensitive 
decision trees, which avoid the calculation of costly 
features as much as possible. 

The rest of the present paper is organized as follows. 
Section II reviews related work while Section III 
presents research motivations and the proposed 
approach. Section IV provides details on the 
experimental setup and discusses the experimental 
results. Finally, Section V concludes the paper and 
presents the future work. 

II. RELATED WORK 

Along with their power of sensing, computations, 
and communications, the ubiquity of smartphones has 
made them the ideal platform for HAR. In [5], the tri-
axial accelerometer of a smartphone is used to predict 
user activities. Machine learning over some features 
extracted from 10s segments of sensor data was 
employed to recognize activities such as standing, 
walking, jogging, and ascending and descending stairs. 
Ravi et al [6] utilized deep learning over data from both 
accelerometer and gyroscope sensors for HAR. 

While prediction accuracy is the main concern of 
the works mentioned above and of many others, the 
limited battery capacity of smartphones has motivated 
some researchers to take into account the power 
consumption of prediction operations. HAR tasks 
consist of different layers of work and power 
optimization efforts in this area can be best organized 
and understood by using this layered perspective. Fig. 2 
expands previous Fig. 1 by illustrating these different 
layers. As a place where electrical energy is consumed, 
within each layer lies an opportunity to conserve 
energy. The whole task can be decomposed into two 
layers: sensing and computations. The latter itself 
consists of two sub-layers: feature extraction and 
classification. The duty of the sensing layer is to 
activate and read sensor values and then provide them 
as a stream of raw data to the layer of feature extraction 
and preprocessing. 
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Fig. 2: Layering of a human activity recognition task. 

A. Sensing Layer 

Some researchers have worked on optimizing 
power consumption at the lowest layer by disabling as 
many sensors as possible. For smartphone-based 
activity recognition, [7] proposes an algorithm that 
attempts to ignore (and turn off) some sensors when 
data from other sensors provide sufficient informant for 
prediction. The same concept is used in [4, 8] for 
activity recognition via multiple wearable sensors. 
Some researchers have studied the tradeoff induced by 
the temporal resolution of sampled sensor data. Higher 
sensor sampling rates can improve prediction accuracy 
but can also adversely affect power consumption. In 
addition to adjusting the sampling rate, the duty cycling 
(sleep scheduling) of sensors can raise power 
efficiency. Employing both techniques, Yurur et al [9] 
report 20% to 50% improvement in sensor power 
consumption at the cost of a 15% accuracy decrease. In 
[10], a comprehensive study is conducted on the sensor 
sampling rate's effect on the accuracy of activity 
recognition and the results show that the tradeoff is, in 
fact, dependent on the type of activities. In other words, 
some types of activities, such as ascending stairs, 
require a high temporal resolution of sensor data to be 
accurately predicted, while some others, such as sitting 
and standing, do not. The same holds true for the set of 
features extracted from raw sensor data, which show 
that some activities only require time-domain features 
to be accurately predicted while for some other 
activities, more compute-intensive frequency-domain 
features are also needed. The minimum per-activity 
sampling rate and feature set requirements have been 
experimentally quantified and the results incorporated 
into their A3R algorithm. This starts by the maximum 
requirements, and, as soon as an activity is predicted, it 
switches to the optimum requirements and remains that 
way until a threshold of degradation in recognition 
confidence is observed. The A3R algorithm obviously 
works at both the sensing and feature extraction layers 
and achieves a 20% - 25% energy saving. 

 

B. Computation Layer 

Computational tasks consume power and the 
computation layer of Fig. 2 is another place to 
implement power optimization efforts. The trend of 
smartphone applications to become smarter, more 
complex, and thus more power-hungry, along with the 
ongoing enhancements in low-power sensor hardware 
is shifting the importance of power optimization from 
the sensing layer to the computation layer. Some 
researchers have tackled the problem at this layer by 
employing types or versions of algorithms which are 
less compute-intensive. Anguita et al [11] demonstrated 
that using a fixed point instead of a floating point 
implementation of SVM algorithm can significantly 
decrease the power consumption of activity recognition 
tasks at the price of a subtle increase in the recognition 
error. Ravi et al [6] proposed a framework for activity 
recognition based on deep learning, which avoids costly 
computations and is power-efficient. 

C. Feature Extraction Sub-layer 

The feature extraction sub-layer extracts 
informative data from raw sensor readings. These 
features are the inputs into the classification algorithm. 
A comprehensive overview of the possible extracted 
features is given in [12]. This layer can also be the target 
of energy optimization. Yan et al [10] showed that 
sometimes ignoring costly frequency-domain features 
does not significantly decrease the recognition accuracy 
of some activities such as sitting and standing. In [13], 
a similar study is conducted for the same purpose. 
Energy optimization in the feature extraction sub-layer 
deserves more attention because it involves a 
significant amount of calculations and is often more 
compute-intensive than the classification sub-layer. 

III. THE PROPOSED APPROACH 

A. Motivation 

Feature extraction is a significant part of the 
computation layer. Power optimization at this sub-layer 
of HAR is the focus of the present study. Energy 
consumption is one of the feature extraction costs and 
it is desirable to avoid calculating as much as possible 
costly features during classifications. The idea is to 
conserve feature extraction energy by exploiting the 
fact that various types of features are not equal in terms 
of the power they consume and the contribution they 
make to the prediction outcome. Table 1 presents the 
features used by [5] for activity recognition on 
cellphones. The table contains a total of 43 features 
categorized into 6 different groups. The average 
amount of energy consumed to compute each feature 
type is depicted in Table 2. The energy measurement 
approach will be described later in Section IV. 

As shown in the table, the energy demand for 
feature calculations varies significantly among the 
groups, from 3.25 μJ (microjoules) for DIST up to 
193.6 μJ for RSS. 
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Table 1: Features for activity recognition from 
accelerometer data. 

Group Description Count 

AVG Average acceleration 1 per axis 

SD Standard deviation 1 per axis 

AD Average of absolute 
difference from mean 

value 

1 per axis 

DIST Distribution over 10 

equal-sized bins 

10 per axis 

RSS Average of the root of sum 

of squares of the three axis 

values 

1 

TBP Average time between 

waveform peaks 

1 per axis 

 

Table 2: Energy consumption cost of extracting 
features in different groups. 

Group Energy (μJ) 

AVG 27.4 

SD 28.3 

AD 28.2 

DIST 3.25 

RSS 193.6 

TBP 36.7 

 

B. Energy-Efficient Activity Feature Extraction 

Activity recognition is a classification problem, and 
machine learning classification algorithms may be 
rendered sensitive to several types of costs, such as 
misclassification costs and test costs [15]. Test-cost 
sensitive techniques focus on reducing the cost of 
testing attributes which act as inputs to the classifier. 
This term is derived from a medical diagnosis context 
in which some clinical tests are required, but it is 
desirable to skip some of the more costly ones (in terms 
of expense, time, complications, etc.) when the 
accuracy of the results is not affected by doing so. The 
present study proposes that the same concept can be 
applied to fine-grained feature extraction in the field of 
activity recognition so as to reduce the energy cost of 
the classification task. 

Despite the fact that test-cost sensitive learning can 
be very effective in many practical areas, little research 
has been conducted on this topic. Test-cost awareness 
in machine learning can be achieved in different ways. 
Some researchers have employed feature reduction 
methods for this purpose [16]. This term refers to one 
of the tasks in the data preprocessing phase of machine 
learning whose aim is to eliminate some less important 
features from input dataset, which can then result in 
lower feature extraction costs. Another approach is to 
exploit the ability of some learning algorithms to handle 
missing attribute values [17]. The current work adopts 
an approach which takes advantage of the fact that some 
machine learning techniques such as decision trees, 
inspect input variables in an order and so may come up 
with a result before having tested all of them. This 
method slightly modifies the inductive bias of the 
learning algorithm making it more likely to place the 
less costly features near the root of the tree. 

C. Test-Cost sensitive Decision Trees for Activity 

Recognition 

A decision tree is a tree structure that classifies 
instances based on some testing of attribute values. 
Starting from the root, each node of the tree performs a 
test on a specific attribute, with the branch to the next 
level depending on the test result. The instance 
descends down the tree until a leaf node is reached, 
where the classification of the instance is determined. 
For the case of human activity recognition, the nodes of 
the tree perform tests on extracted features (the features 
listed in Table I, for example) and the leaves are labeled 
with recognized activities, such as walking, sitting, etc. 
Fig. 3 provides a segment of a sample decision tree. 

 There are several methods for constructing decision 
trees from sample instances of data. C4.5 [18] is a well-
known greedy algorithm for decision tree induction. It 
starts from the root node and selects the attribute that 
best separates the node’s training instances of data. 
Then, the data is split among the child nodes and the 
same process repeats for attribute selection at the next 
level. The process continues until data is separated 
enough where a decision leaf node is placed. The 
impurity of the classes in the data subset can be 
quantified using the entropy measure. The definition of 
this measure is provided by Equation 1, where S is the 
set of data, pi is the proportion of S belonging to class i 
out of c total classes. 

𝐸(𝑆) = −∑ 𝑝𝑖 log2 𝑝𝑖
𝑐
𝑖=1  (1) 

The C4.5 algorithm selects test attributes based on 
their effectiveness in entropy reduction. The measure 
used for this purpose is called “information gain” and is 
defined in Equation 2. This equation formulates the 
information gained after splitting the set S of instances 
according to the possible values of attribute A. V is a 
function of A which returns the set of possible values of 
A while Sv is the subset of A belonging to specific class 
value v. 

𝐺(𝑆, 𝐴) = 𝐸(𝑆) − ∑
|𝑆𝑣|

|𝑆|
𝐸(𝑆𝑣)𝑣∈𝑉(𝐴)  (2) 

 

 

Fig. 3: A sample decision tree segment for activity 
recognition. 
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Fig. 4: The proposed HAR energy optimization framework. 

 

For continuous attributes (which is the case for the 
HAR problem), C4.5 uses maximum entropy-based 
discretization to split the range of each attribute into 
two pieces. In this case, function V will return these two 
ranges and Sv is the subset of A belonging to range v. 

The gain measure defined in Equation 2 introduces 
an inductive bias into the tree learning algorithm, which 
places more informative attributes nearer to the root of 
the tree. In order to introduce cost awareness to the 
learning algorithm, some researchers propose 
alternative measures, such as the cost sensitive gain 
(CSG) in Equation 3 as suggested by Tan et al [19] in 
which C(A) is the cost of testing attribute A. 

𝐶𝑆𝐺(𝑆, 𝐴) =
𝐺(𝑆,𝐴)2

𝐶(𝐴)
 (3) 

Nunez et al [20] proposed a weighted CSG measure 
(Equation 4) which allows adjusting the relative 
importance of costs by selecting the value of a w weight 
constant. 

𝑊𝐶𝑆𝐺(𝑆, 𝐴) =
2𝐺(𝑆,𝐴)−1

(𝐶(𝐴)+1)𝑤
 (4) 

D. The Proposed Framework 

An overall view of the proposed framework is 
depicted by Fig. 4. This can be divided into two main 
parts: Modeling time and runtime. At modeling time, a 
labeled HAR dataset is employed for energy profiling, 
training the model, and testing it. The profiling step 
measures the energy consumption of extracting various 
features and so produces a Feature Extraction Cost 
(FEC) vector. This vector is later used by the test-cost 
sensitive modeling algorithm to train the model using a 
fraction of the dataset. The trained model is validated in 
terms of both energy and prediction accuracy. The 
energy-error product is a viable measure for model 
validation. A model which passes the validation step 
can be utilized at runtime for recognizing human 
activities from sensor data. 

IV. EXPERIMENTS 

In order to evaluate the proposed approach’s 
effectiveness in feature extraction cost awareness, a set 
of experiments are set up. This section presents the 
details of the experiments and discusses the results. 

A. Experimental Setup 

1) Dataset 
In order to assure the validity of the evaluations, a 

real-world dataset is used for the experiments. This 
dataset, provided by WISDM lab [5], contains 
cellphone tri-axial accelerometer data collected by 29 
volunteer subjects. Each data record contains several 
fields, namely three acceleration values, a timestamp, a 
user ID, and an activity class label. Activity class labels 
feature one of 6 possible values: walking, jogging, 
ascending stairs, descending stairs, sitting, and 
standing. 

2) Feature Extraction 
The raw dataset contains more than 1 million sensor 

reading records sampled at a rate of 20Hz. The 43 
features of Table I have to be extracted from the raw 
sensor signals. For extracting these features, a 
transformation tool [14] is developed and published by 
WISDM lab members. This tool segments sensor 
signals into 10-seconds segments of 200 samples and 
calculates a feature value tuple per segment. The Java 
source code of this transformation tool is also released. 
The present work instruments this Java source with an 
energy characterization code for discovering the energy 
cost of feature extraction. 

3) Energy Characterization 
The proposed computational energy optimization 

approach requires the precise characterization of feature 
extraction energy costs (The FEC vector in Fig. 4). For 
the experiments, the present work utilizes an ASUS 
Zenfone 2 smartphone with an Intel Atom main 
processor, which runs on an Android 6 operating 
system. The RAPL (Running Average Power Limit) 
interface [21] is employed to access the processor 
energy counters via the Android kernel sysfs interface 
[22]. In order to minimize any side effects, other 
processing tasks are disabled while profiling the feature 
extraction code. Energy usage is measured and 
averaged over the whole WISDM dataset, with the 
results having been presented earlier in Table 2. 
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Fig. 5: Recognition error and Energy per Opration 
for different learning algorithms. 

4) Energy-aware Activity Recognition 
After the energy consumption behavior of the 

features is characterized, a test-cost sensitive decision 
tree algorithm employs the cost vector to build the 
model. For this purpose, the present study extends the 
open-source Weka [23] data mining software and adds 
the test-cost sensitive decision tree learning capability. 
The C4.5 algorithm (known as J48 in Weka) is 
extended to accept the feature extraction cost vector and 
to consider costs while constructing the tree. The cross-
validation part of the software is also extended to 
calculate and report the energy cost of the classification 
operations. Furthermore, to be able to run Weka on the 
Android platform, it was necessary to remove the 
graphical parts of the software which are not supported 
on the Dalvik Java virtual machine. The energy cost of 
each recognition operation is defined as the sum of the 
costs of the tests performed until a decision node is 
visited, with the exception that each node only imposes 
a cost when it is first visited. The cost of the next visits 
to the same node is considered as zero since the test cost 
is already paid. All experiments conducted throughout 
the current work are performed by 10-fold cross 
validation. 

B. Results 

The present study employs two different measures 
for evaluating the HAR models, namely energy per 
operation (EPO) as a measure of energy consumption 
and recognition error as a measure of prediction 
accuracy. EPO refers to the average amount of energy 
consumed (in μJ) for each activity recognition 
operation. Recognition error is the percentage of 
incorrect predictions. Fig. 5 shows the EPO value for 
the cost-insensitive C4.5 algorithm and cost-sensitive 
Tan and Nunez algorithms. The Nunez algorithm 
experiment is performed for three different w constant 
values. As depicted in Fig. 5, the usage of a proper cost-
sensitive model can significantly decrease energy 
consumption at the low cost of prediction error. 

 

As previously mentioned, the role of constant w in 
the Nunez algorithm is to make a tradeoff possible 
between energy consumption and recognition accuracy. 
To study the effect of this constant on error and EPO, 
the HAR model is built and evaluated for w values in 
the range of [0,30] with an increment step of 0.1. Fig. 
6a demonstrates how EPO and error are affected by the 
gradual increase in the value of w. In order to better 
highlight the outcome of the tradeoff, Fig. 6b reports the 
same tradeoff variables using similar scales, in terms of 
the percentage change from each point to the starting 
point (cost-insensitive model). 

As seen in Fig. 6, the outcome of the tradeoff 
between energy consumption and recognition error is 
promising. However, a question remains regarding the 
proper value of weight w. One method of choosing this 
value is to set a maximum threshold value for the 
modeling error and choose a w that leads to minimum 
energy consumption without exceeding the desired 
error threshold. Another approach is to utilize a mixed 
performance measure that is composed of both energy 
consumption and error measures. Fig. 7 provides the 
performance of the model for such a measure: energy-
error product (EEP). According to this graph, a proper 
selection for w can be around 15 after which no 
significant decrease in EEP is observed. 

 

(a) Error and EPO vs w. 

 

(b) Error and EPO percentage change vs w. 

Fig. 6: The effect of Nunez w constant value on 
recognition error and Energy per Operation 
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Table 3: Comparison of the results. 

Model 
Energy Consumption (μJ) 

Accuracy 
(%) 

EEP Feature 
Extraction 

Activity 
Classification 

Total 

LR [5] 652.9 21.8 674.7 85.2 9986 

MLP [5] 652.9 148.6 801.5 89.7 8256 

Ensemble [24] 652.9 187.8 840.7 94.0 5044 

C4.5 [5] 276.6 17.4 294.0 92.4 2234 

Proposed (Nunez, w=6) 112.0 16.1 128.1 92.8 922 

Proposed (Nunez, w=11) 78.6 15.7 94.3 91.8 773 

Proposed (Tan) 70.5 14.4 84.9 92.1 671 

Proposed (Nunez, w=15) 55.2 15.3 70.5 91.6 592 

 

Fig. 7: The effect of Nunez w constant value on 
Energy-Error Product (EEP). 

In order to evaluate the merits of the proposed 
approach, it is compared with some other models: 
Linear Regression (LR), Multilayer Perceptron (MLP) 
and Decision Tree (C4.5), which are all used in [5], and 
an Ensemble of these three models which is used in 
[24]. The experimental environment is the same as the 
one used for previous experiments where the dataset 
provided by the WISDM lab [5] is used as the input 
dataset and Weka data mining software [23] is utilized 
for evaluating the compared models. All accuracy 
values are reported using 10-fold cross validation on the 
models and the energy consumption values are 
measured using the RAPL interface [21] of the 
smartphone under test. 

Table 3 provides the results of the comparisons 
where energy consumption of the two computation 
layers of Fig. 2 are reported separately. The fact that 
feature extraction energy cost is significantly higher 
than the classification cost, approves the main 
motivation of the paper which is energy optimization at 
feature extraction layer. The table uses some different 
configurations of the proposed approach. Although 
some of the compared models provide a marginally 
better recognition accuracy, the proposed method 
consistently outperforms the other models in terms of 
energy consumption and energy-error product (EEP). 

V. CONCLUSIONS 

While smartphones are convenient and attractive 
devices for human activity recognition, the challenge 
posed by their limited battery capacity should not be 
neglected. The current paper investigates the energy 
optimization of HAR operations at the computation 
layer or more specifically, at the feature extraction layer 

via cost-sensitive decision tree learning. Experiments 
show that at this layer of HAR tasks lies great 
opportunity to save energy. Future work involves a 
comprehensive study of energy bottlenecks in applied 
learning algorithms on smartphones. Energy bottleneck 
refers to points of computation where much of energy 
is consumed for little or no gain in prediction accuracy. 
Identifying these points can be an important step 
towards developing a smartphone-friendly machine-
learning engine for HAR and other applications in IoT. 
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